0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 495 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 LowerBoundsProof (⇔, 0 ms)
↳11 BOUNDS(n^1, INF)
↳12 typed CpxTrs
↳13 LowerBoundsProof (⇔, 0 ms)
↳14 BOUNDS(n^1, INF)
f(x) → s(x)
f(s(s(x))) → s(f(f(x)))
f(x) → s(x)
f(s(s(x))) → s(f(f(x)))
Generator Equations:
gen_s2_0(0) ⇔ hole_s1_0
gen_s2_0(+(x, 1)) ⇔ s(gen_s2_0(x))
The following defined symbols remain to be analysed:
f
Induction Base:
f(gen_s2_0(+(2, *(2, 0))))
Induction Step:
f(gen_s2_0(+(2, *(2, +(n4_0, 1))))) →RΩ(1)
s(f(f(gen_s2_0(+(2, *(2, n4_0)))))) →IH
s(f(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
f(gen_s2_0(+(2, *(2, n4_0)))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s2_0(0) ⇔ hole_s1_0
gen_s2_0(+(x, 1)) ⇔ s(gen_s2_0(x))
No more defined symbols left to analyse.
Lemmas:
f(gen_s2_0(+(2, *(2, n4_0)))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s2_0(0) ⇔ hole_s1_0
gen_s2_0(+(x, 1)) ⇔ s(gen_s2_0(x))
No more defined symbols left to analyse.